Structures of B-Lymphotropic Polyomavirus VP1 in Complex with Oligosaccharide Ligands

نویسندگان

  • Ursula Neu
  • Zaigham Mahmood Khan
  • Benjamin Schuch
  • Angelina S. Palma
  • Yan Liu
  • Michael Pawlita
  • Ten Feizi
  • Thilo Stehle
چکیده

B-Lymphotropic Polyomavirus (LPyV) serves as a paradigm of virus receptor binding and tropism, and is the closest relative of the recently discovered Human Polyomavirus 9 (HPyV9). LPyV infection depends on sialic acid on host cells, but the molecular interactions underlying LPyV-receptor binding were unknown. We find by glycan array screening that LPyV specifically recognizes a linear carbohydrate motif that contains α2,3-linked sialic acid. High-resolution crystal structures of the LPyV capsid protein VP1 alone and in complex with the trisaccharide ligands 3'-sialyllactose and 3'-sialyl-N-acetyl-lactosamine (3SL and 3SLN, respectively) show essentially identical interactions. Most contacts are contributed by the sialic acid moiety, which is almost entirely buried in a narrow, preformed cleft at the outer surface of the capsid. The recessed nature of the binding site on VP1 and the nature of the observed glycan interactions differ from those of related polyomaviruses and most other sialic acid-binding viruses, which bind sialic acid in shallow, more exposed grooves. Despite their different modes for recognition, the sialic acid binding sites of LPyV and SV40 are half-conserved, hinting at an evolutionary strategy for diversification of binding sites. Our analysis provides a structural basis for the observed specificity of LPyV for linear glycan motifs terminating in α2,3-linked sialic acid, and links the different tropisms of known LPyV strains to the receptor binding site. It also serves as a useful template for understanding the ligand-binding properties and serological crossreactivity of HPyV9.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystallographic and glycan microarray analysis of human polyomavirus 9 VP1 identifies N-glycolyl neuraminic acid as a receptor candidate.

UNLABELLED Human polyomavirus 9 (HPyV9) is a closely related homologue of simian B-lymphotropic polyomavirus (LPyV). In order to define the architecture and receptor binding properties of HPyV9, we solved high-resolution crystal structures of its major capsid protein, VP1, in complex with three putative oligosaccharide receptors identified by glycan microarray screening. Comparison of the prope...

متن کامل

High-resolution structure of a polyomavirus VP1-oligosaccharide complex: implications for assembly and receptor binding.

The crystal structure of a recombinant polyomavirus VP1 pentamer (residues 32-320) in complex with a branched disialylated hexasaccharide receptor fragment has been determined at 1.9 A resolution. The result extends our understanding of oligosaccharide receptor recognition. It also suggests a mechanism for enhancing the fidelity of virus assembly. We have previously described the structure of t...

متن کامل

Generation of Merkel cell polyomavirus (MCV)-like particles and their application to detection of MCV antibodies.

The genome of a new human polyomavirus, known as Merkel cell polyomavirus (MCV), has recently been reported to be integrated within the cellular DNA of Merkel cell carcinoma (MCC), a rare human skin cancer. To investigate MCV seroprevalence in the general population, we expressed three different MCV VP1 in insect cells using recombinant baculoviruses. Viruslike particles (VLPs) were obtained wi...

متن کامل

DNA encapsidation by viruslike particles assembled in insect cells from the major capsid protein VP1 of B-lymphotropic papovavirus.

Capsids of polyomaviruses--small, nonenveloped DNA viruses--consist of the major structural protein VP1 and the minor structural proteins VP2 and VP3. The contributions of the individual capsid proteins to functions of the viral particle, such as DNA encapsidation, cell receptor attachment, entry, and uncoating, are still not clear. Here we show that viruslike particles assembled in nuclei of i...

متن کامل

Persistence and tissue distribution of DNA in normal and immunodeficient mice inoculated with polyomavirus VP1 pseudocapsid complexes or polyomavirus.

Introduction of DNA into normal and immunodeficient mice, alone or in complex with VP1 pseudocapsids, has been compared to DNA transfer by viral infection. Similar to natural infection and in contrast to plasmid alone, VP1 pseudocapsids efficiently introduced DNA, which remained for months in normal mice and possibly longer in B- and T-cell-deficient mice.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013